
.

I
,’

.

11,

m
n:

R?)

*

L

NATIONAL ADVISORY COMMITTEE

FOR AERONAUTICS

TECHNICAL NOTE

No. 1805

REMARKS CONCERNING TEE BEHAVIOR OF THE IAMINAR

BOUNDARY LAYER IN COMPRESSIBLE FLOWS

By Neal Tetervin

Langley Aeronautical Laboratory
Langley Air Force Base, Va.

Washington
January 1949

--

L,. -.. LI, . .,, ,.., ~

J

—.—- -——-. .. . . . ----- -, +-- .,--- ... . . P-. ,--, . . . . ..——— -.. . . .

I

—.J



NATIONAL ADUSCIRY COMMDTEE

TECH LIBRARY KAFB, NM

Ilmwllllullllllllllfllu
FOR AERONAUTIC. 01J44937

TII-CAL NOTEIfO. 1$35 .
,-.,,. -1 -, . ,~.,[ :-, ,- - -c- ,- “ ,: -.. .-..: --, ,: ,_ L: f .- -..’. ., ,’.,

-~:, ::, ~.--:,:,

When the ratio of the locsl veloc+t$Jo the f%ee-stresm velocity and
the ratio of local tempature to the free-stresm teqerature at all yoints
on the mmface of a body snd at the outer edge of its boundsry layer do not
change @th Rep3~Cn@er:-,~_,v~n,.t~ r,~,ch:,p~-=.7,~+_ t% @YSic~
propetiies of the--&as~so do riotch6nge with Reynolds nuuiber,the boundary-
layer -ljhiclmessat:,,a,/?@qd-po~t,:oq aip-q,~.l$s.myerse~,n proportional to the
squsre root of the”Rejhkil.~”number, the ~f ace-friction coefficient at a
fixed point is inversely proyortimal to:~@z s~~-e root:,of.the Reynolds
nuder, the friction-drag coefficient of the @z% ofj‘6’‘bod&”covered.by a
lsminsr boun~,-,lqer-is i?qe$pej~,pro$~@@-,,~p ~~S,L!ylwe root of the
Reynolds n~6r, -the separation point is indepe~nt+f ,theReynolds number,
and the nond3mensionsl velocity yrofile is invariable at a ftied &action
of the body length frcm the stagpat,iq@.yo@t. ~ upe of.the boundsry.-lwer
equations, sepratim of the lm&%r’ boumkmy iayer is shown to occur only
when the static pressure along the surface rises @J.tlm.Mrectim of flow..-,..,L,.
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Sane useful results of t~,:,~qqit~:bomJpry-lqygr; thpmy for the
incompressible lsminsr boundary l~er tie lmti- to be obtainable directly
from the fm of the boun~:lq~r:pqua~iq -without.having to solve them
(reference1). The loun~”-layer tticfiess and friction”&mg are found to
be inversely proportional to the square root of~the Reynol@ mmiber, end :
the nonMmensionsl velocity yrofile at a fixed point ti-a ‘~odyand the
seperat$on,Ioiqt sre foupd to,p, indeyendenijof the Reyuolds nmber. These
theoretical results L% true‘when”the &ess&e” &L&t:iktiion on a body is
independent cf the Reynolds number.

,- ,.-.
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2

Because of the Increased significance of the leminer boundary-layer
for flows in which the effects of compressibilityand heati~ are iqortant,
it seemed desirable to detemine whether conclusions shiler to those for
incompressible flow can he drawn from the form of the boundary-layer equa-
tions for high-speed flows. An investigation to determine whether separation
of the %oundsry layer can occur when the pressure along the surface does
not rise in the direction of the flow also seemed desirable.

Alti,oughsme of the results obtdned ere @$Licit in the work of
Von K&man and Tsien (reference2) and in the work of others, it was thought
worthwhile to develop the results loth for two-dhensional flow and for
axially symmetric flow over a %ody of revolution, and to state them explicitly
together with the conditions for which they are vslid. The results are
~ohalily of most interest to experimentalistswho reqtie a lmowledge of
boundary-layer belmvior, lmt who have not had the opportunity to develop
these results for themselves.
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SYMBOLS

velocity inside bom layer and perallel to surface

velocity inside boundary layer and perpendicular to surface

M.stance along surface

distanc~ measured fran surface in a direction perpendicular
to surface

radius of body of revolution

temperature

coefficient of viscosity

density

coefficient of heat conduction

specific heat at constant pressure

length of %ody
.

velocity at outer edge of boundery layer and perallel to
surface

.

.
free-streem velocity

—— -.——— --—- ———. —– ——,, .,. ..,
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Subscript:

o

()PozuoReynolds nmibsr —
Po

()U.
Mach nuuiber c;

velocity of sound in free stream

static pressure

stresm function

Frsndtl nuuiber

for two-dimensional flow

/ ‘0/

surface shesrhg stress

ratio of spcific heats

gas constant

canyonent of lody force slong x-sxis

cczqmnent of body force along y-axis

stresm function for flow over body of revolution

free-stream conditions

Quantities which contain
conditions sre Mmensional.

a bsr and which do not refer to free-stream

AwiEmcs

Two-Dimensioned.Flow

Ik3rivationof boundary-laYer equations.- The steady flow of a gas
over a waJJ in a layer having a thiclmess which is a negligible fraction
of the radius of curvature of the wall 1s described herein lzythe Navier-
Stokes equations of motion in surface coordinates with the t-&ms
involve surface curvature neglected, the equation of continuity,
energy equation tith Ep constsnt.

that

end the

.-. —.. . ..— —... —.- .. ___ ..__ _____ ____ _____ —— . . . . . . .. ——.. . ..—. .——.,,



(1) The Z ccmpment of the equation of motion is

(2) The ; cumponent of the eqmt ion of motion is

(3) ‘lb eq.mtion of continuity is

(4) The ener~ eq,wtion for Zp constant is

(3)

(4)

.
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The usual assumption of the boundary-layer theory (reference 1) that the
flow takes place in a thin layer in which the velocity is almost paraJJel
to the wall and in which the largest
of magnitude as the inertia terms.is

S=2X

()

?=R+2Y
o

ii = Uou

()
“E+’

o

- ~ Uouu

viscous terms are of the same order
now made by the following substitutions:

F= PPO

2

:-PO = PJ.JOP

[

(5)
5P = CPCPO

I=ldco

T=Tro
J

When substitutions (5) are used in equation (l), one group of terms has
the factor lfio. For large Reynolds mmibers this group is neglected and
equation (1) beccmes

&lau ()aQ+b_ & (6)w2+ m&=-ax ayby

where the body forces m= are also neglected.
.

W&n substitutions (5 are used in equation (2) and all terms containing
the factor 1/%0 or lfioA “are neglected and the body forces ~Fy are

neglected, the result is.

o=~a (7)
dy

The use of substitutions (5) in equation (~) results in

apu apv o

G ‘F=

(8)

. _- —._— —.—--- -- .—— — --—---—-—----—- .—— — —- —-.-—— -—-—— —-—- ------ -. ---



6 NACA TN No. 1805

When eg.uation(7) and 13ulmtitutions

(Y - 1)1.$2
terms containing the factors ~ Y

o

equation (4) becmes

.

arar
pu —+pv

ax [
~= (7-l)& z!

u ax

(5) me used in eg.uation(4) and.

1 ~ (7 - 1)%2
are neglected,

a~j
“R02

‘RYl+$$@)“)
Wuati~ (6)j (7)j (8), @ (9), together tith the equation of state for a’
gas and relations between p, k, end T, describe the flow in the boundary
layer. ~ecause of equation (7) the static pressure in the boundary layer is
a function only of x; therefore, ?P/& in equations (6) and (9) can he
replaced by dp/dx.

“A norullmensionalstream function * is

1
v=-—

P 2J

The equation of continuity (equation (8)) is
Equation (6) lecomes

and equation (9) beccmes

then introduced,where
.

(lo) “

automaticsMy satisfied.

(H.)

L d

The relative density p can be replaced by a function of T, K, 7,
and Q by the folluwing development. The static pressure in the boundary
layer is a function only of x; therefore, the density at a point in the
boundary layer de~m o- on the temperate at the yoint and on the
static yess~e at the ewe of the boundary layer. Thenj frm the Terfect
gas law

-.
P=J?L—— (13) .

Po T

—- —. — .—-— —— ‘— ..- -——
,, ----

,: —---
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where ~ is the static pressure at the boundsry-layer edge. I!rmnthe
definition

0

5- Po = PJJo2P

the perfect gas law

P. = PORTO

end the expression

cpo(7 - l)TO = (J02

the following relation can be obtained:

if
—=l+?l&p
Po

Equation (13) then lecomes

(14)

where

$Ll+7M02p

When equation (14) is substituted in equations (U.) and (12), equation (lJ_)
becomes

end equation (12) becamq

._—.— ,.. ——. --— ——— -——. . .-— — —-— . ..— ----
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w eqmtions (15) and (16)
of T end U. is assumed

(16) describe the lehavior

t:

of

and k ere assumed to
d.qend only on the gas.

%0 functions oily
Equations (15) and

the lsminar boundexy layer in a ccnnpressible .
flow. The solution in a specific case rec@res the determination of $ (x,Y)
and of T (xjy) sub~ect to-the following ~oundsry conditions:

..

When y = O,

U=o

T = T(x)m

v= V(x)y+

when y+w,

u =U(x)

T = T(x)

(17)

When @ and the boundary con&ltions ere independent of the Reynolds nuder,
it is seen from equations (15) and (16) that although the Mach nmiber end
the physical properties of the gas appear, the Reynolds numler does not.
The conclusion, therefore, is that ~ (x,y) and T (xjy) are independent
of the Reynolds number but are deyen&3nt on the physical pro~erties of the
gas and on the Mach number.

BoUndery-layer thiclmess, skin friction, separation point, and velocity
ymofile.- The value of y at the edge of the boundary layer is determined

hy the requirement that ~aj.u~+= $ where p (x,y) end V (x~y) me inb- ,

z
~endent of Reynolds nuuiber.

()

Substitutions (5) state that 7 = —
Rol/2 ‘“

Therefore, for a given relative press&e and tem-peraturedistribution
along the lody as well as for a given Mach number.and gas, the boundary-
lhyer thickness at a ftied point on the body is inversely proportional to
the squsre root of the Re~olds nmiber.

.

J

—— ~-. .“ ——-—— . ..— —+. . —
,.
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The surface shearing-stress coefficient is

orwithu=O at y=,O andp= i
T

‘s ( b2*\—=@+ ‘T—POU02 0

Because V (xjy), T (X,y) @d @ (X)

friction coefficient
‘s— at a fixed

POU02

+2)y.o

are ind.qendent

point ~ a body

proportional to the square root of the Re@ds number

of

is

R.
boundary conditions (equations (17)), the Mach nmbr ~~

(18)

Ro, the surface-

inversely

when the
and the gas are

fixed. The friction drag coefficient of the part of a body coveredhy a

laminar loundaxy layer also varies as

(equations (17) ), the Mach number ~,

The separation point is the point

()X’J .0
where

v
. The value of x

y=()-

l/~ when the boundary conditions

and the gas are fixed.

at which TS = O; that is,

at which

independent of R. when ~ (x,y), T (Xjy)j and

z
of Ro. The ratio ~= x is also independent of

()a%- =0 is
2 Y=o

# (x) are independent

the Reynolds number.

Therefore, the separation point on a body, when the Mach number, the gas,
and the boundary con&Ltions (equations (17)) are fixed, is independent
of the Reynolds number.

Mach

thus

This
n

For fixed boundary conditions (17) and for a fixed gas and a fixed
number, the curve of u against y is independent of Reynolds number;

the curve of fifi against ;6 is invariable at a station Z/Z.

criterion can be used to test whether a velocity profile is leminar.

.

—_

——-.. ...-- .. —- .—______ —--— -.———_. ---———— ——..—
-,



10 NACA TN No. 1805 .

I?ecessity of a Positive mressure ~adient for se- atfon.- The

separatim point

andii> ofor

iS aefmea as the point at which
()

~

s74=0

y>o.

()~Consider the possibiMty of m = 0 when

( )

g <o

* ~=o y=o

Rcnn the equation of continuity, (equation (3)) and the eqmtlm
of motion (eqmtim (1)) with ii = 7 = O at ~ = O it follows that
at~=O

3E -
* &&

o
‘-=+. p

~+~g

It is now assumed that the .velooitycm be expmbd In a Taylor’s series.
Thus, I

.

—- .-. — —, - -L .- —~ ..— ~-—— . . -
. ..’ .. -----
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()a~ $.
‘m %@ o<0 itfollows that — . Therefare = < 0 for

*zT=o<o ,

small y. This result, however, disagrees with the re~uirement that ii

()$~=o (i)3? <0for ~ >0. Therefore cannot be zero when _ .
y=o .

().

+
separation cannot oicur when

zy~<o”
If the bou@ary-layer

9<().occur when’
(IZ

()-?P -‘@and it follows that separationtiops are used then
~F3=dz

d=
=0 when-=0.

&

Thus

Consider

l?rclmthe full

()

a%

$Y.o=o

the possibili~ of having

()

&

* .~=o

()

S
equation of motion with ~ =

&O

()&i
when

% y~
=00 Thus, at~=O

asslmlp-

Cannot

0 it fold.owsthat

By using the boundary-layer e~uation of motion (eg.uation(6))

(3),+=(9‘o ● ●=(3 ‘0 “
7=0 f=o

>0

. .... ..-. —.- .._. -———. ..——.—.-— ----- ——.-. --- ..— — —e ..—. — — .—— - -.—— .—

. .
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.

Therefore, if
Q- .()”-

()_

$ =0, it follms that ii=o fora~,
dz ?7 T*

when it is assumed that ii can be expanded in a Teylor1s Series in ~. The
conclusion that ii= O for all ~, however, contradicts the re@_rement

that ii > 0S for ~ > 0. ‘I!keref ore,
()

& Q–=o
cannot be zero when

*
E“

F=o

ThW, separation.cannot occur when dj=o .
a=

It has been shown

that separation cannot

assumptions are vaMd,

2=

u

frcnnthe cmzrpleteequation of motion (equati”m (1))

()&ocmm when . If the boundary-layer
&74 ‘0

then it follows that 6eparation cannot occub

when !&&< 0. It has also been shown by

of motion (equation (6)) that separation

3>0.separation canioccur only when
&z

Axially Symmetrical Flow over

using the boundary-layer equation

Iij=o
c-et occur when Therefore,

&“

a Body of Revolution

Derivation of %oundary-layer equations.- The steady flow of a gas
over the surface of a body of revolution h’ a layer having a thichess
which is a negligible fraction of the ratius of curvature of the surface
in a meridian plane is described herein by the I?avier-%okes eqyatione of
motion in surface coordinateswith the terms that involve surface
curvature neglected the equation of continuity, and
with Zp constant.

(1) The Z compment of the equation of motion

the energy equation

is

. .

.

.

I
— -— ——.. ..,.,.—— . . . -— . . —.. -- –.— —.-..,
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. .

of the equation of motion is
/

(2) The ~ camponent

(20)

equation of continuity is

(21)

.
(4) The energy equationa for constant ‘~

4aiIa7——--;aF*

(22)

.

The usual assumption of boundary-layer theo~ are now made
expressed by.

Use of these

magnitude of

eq,uatioG (!5). T.othese substitutions is added Y = rro.

g gsubatittiiona,the fact that
% *&

are of the order of

1/2unity, the assumption that L c E R.
ro

, neglecting terms conta.ininn

\

the term PFX reduces
1

neglecting

equation (19) to

-- —— —-— -——— ——--.—..—— .. . . ——
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(23)
dx

When the dmelopnent used to

applied to eqution (20) and

obtein equation (23) frcm equation (19) is “

11 1
t- containing the factor —, —

Ro Ro3/2’ w R~

and the term p~y are neglected, the result is

The use of substitutions

0=?2
h

(24)

(5) b eqmtion (Z1.) results in

b-+~+.o
ax 1 (25)

When the development used to obtain equation (23) frcnn equation (19] is

applied to eqmtion (22) &d terms cmtaininn

(7 - l)l& (7 - 1)%2 ~ 1
9

ROE Ro3/2 ‘ =0’ 0’ ~$ol/2 ‘e

(7 - l)MOZ
the factor

R. ‘

neglected, the result is

1-

m otitslningequations (23), (24), and (26) from equations (19)., (20),
and (22) it has been assuned that all terms containing the factor l/r are
finite. Eqmtions (23), (24), (25), end (26) describe the flow in the
boundary layer. Because of equation (24), the static pressure in the boundsry
layer is a function o

?
of x; therefme h/& in equation: (23) m (26)

can be replaced by dp dx

A nondimensional stream function iJ is then introduced, where

}

(27)

.

.

-—. . ..-. ——- .—— .—— —.,.
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The equation of continuity, equ@ion (25), is automatically
Equation (23) becmes

and equation (26) heccmes

The relative density
flow. Equation (28)

r

15

satisfied.

()la-i——%d?
-1

p is now reylaced by @/T, just as for
then becomes

and equation (29) becomes r

(28)

(29)

,

two-llll?lensionel

(30)

}

2

(31)

In equations (30) and (31) I.Land k sre assumed to be functions
ODQ of T, a. is assumed to deyend only on the gas, and r is a function

Ofx anay. Equations (30) and (31) describe the laminar boundary
lsyer on a body of revolution in a. compressible fl~. The solution in a
specific case req,tires the determination of ~ (xjy) and of T (x)y) subject
to the boundary conditions, equations (17)’:

— .—— ——.—— .——..-.. ——_ .—.
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When y = O,

when y+ ‘j

u= o

T = T(x) Jr.o

v = v(x)
y=o

u = u(x)

T = T(x)

(17)

\

When @
number, it is

and the houndsry conditions are indqmndent of the Reynolds
seen tiaraequations (3o) and (31) that although the Mach

number- ~ and the physical properties of the gas appear, the Reynolds
nmiber does not. The conclusim, therefore, is that ~ (x,Y) m T (xjY)
exe independent of the Reynolds nuniberbut dependent on the physical
properties of the gas and on the Mach number.

Boundary-layer thiclmess, skin friction, sepsration point, and
velocity profile.- The conclusionE concerning the boundary-layer thiclmess,
skin friction, separation point, and velocity profile are the same as
those obtained for two-.dimmsionalmotion. The conclusions me obttined
in the same way as those for two-dimensionalmotion, except that for the
body of revolution equation (18) IS re@aced 3Y

liecessity of a positive pressure ~adient for separation.- The

()

~
separation point is def~d as the point at which

* ~=o ‘0

and ti>O for ~>0.

(32)

() ()aj<oe
Consider the possibility of having

$
.O when ~

y=o y=o

.

.

.

I
-- —. —..— —..,-,. .
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I

I
From the equation of continuity (equation (21)) and the equation of

Iaz la=
motion (eqwation (19) ) with ii = = = O at ~ = O and with =~ ~–~ $ ~xY

aii
or for

5=0

Then, by the Esme

cannot occur when

()a%
Zy=o<o

reasoning as in the two-dimensional case, separation

(J
a=—
\- <0. If the hounibry-layer assmytiou are

()aj! d~ 9<0.used then
&

= ~ and separation cannot occur when ~

y=o

()

~ djj
Consider the possibili~ of having

G y=o
=0 when ~ = O.

The development is the same as that for two-dimensional flow with the
exception that e uation (23) is used instead of equation (6) and it is
assumed that F ? O and that aIl its derivatives with respect to ~ are

ajj
finite. The conclusion is that separation cannot occur when ~ = O.

.
. --- ———- - -—. ——— —-.-—. ~-.-— ——-——-. . ——. —.— .—. — .—
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The complete equation of motion (equation (19) thus hiicates that

()

bP
separation cannot occur when

z. ‘0”
If the boundary-layer

y=o
assum@ions are valid, it follows that separation cannot occur when @< 0.

&

It also follows frmn the boun@ry-lsyer e~uation of motion (equation (23))

that sepration camnot occur when
Q=o

. Therefore, separation can occur
E

Q>o.only when
S

DISCUSSION

The conclusions of the ~esent work concerning the lehavior of the
leminw boundary layer were reached by the following assumptions:

(1) The loundary-layer thickness is a negligible fraction of the “
radius of curvature of the wall in the plane of the velocity.

(2) The flow in the boundery layer is almost yarallel to the
b

surface.

(3) The boundary-byer thicknese is a smedl fraction of the
distance to the stagnation point.

(4) The inertia and largest viscous forces are of equal order
“ of magnitude.

(5) The body forces are negligible.

(6) The coefficients of specific heat are constant.

(7) The coefficients w and k are functions only of T.

(8) me ~amitl nunitmrde~ends O* on the gas.

(9) The prefect gas law is applicable.

(10) meRewolti nuuiberis large.

For the body of revolution it is alSO assmd that terms which contain r
or its derivatives are finite and that the body 3s not very slender. The
conclusions concerning the effects of Reynolds number contain the .
additional requirements that the con&Ltions at the surface and at the outer
edge of the boundary layer, when ex-pressednodbnensionall.y, equation (17),
are independent of Reynolds number.

.
— .—.— ——. .-.-—- ,: . —
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The assmnptions of the boundary-layer theoq may be invalid down-
stream of the separation point and &rhaps e~en at the separation point.
No evidence is available, however, to inticate that the boundary-layer
appraimations becme so poor at the separation point that the conclusions
concerning the separation point are inveUd. The region near the base of
a shock wave is another at which the boundary-layer assumptions may be
invalid, but here again a d.ef inite statement cannot yet be made.

The conclusims concerning the effect of Reynolds number are noted to
be the ssme for compressible flow as for incompressible flow. For
ccmqmessible flows, however, the boundary conditions involve the temperature
distribution as well as the pressure distribution. The Mach ntier and
t~ ratio of the sjmcific heats appear as parameters.

COJ!KLUSIOMS

The boun@ry-layer eq~tion of motion and the boundary-layer energg
equation for the compressible and steady leminer boundary layer on two-
Mm.ensionel bodies and bodies of revolution are written. in a nondimensional
form to provide a clearer indication of the effects of Mach number,
Reynolds nmiber, and the yoperties of the gas.

When the ratio of the 10CO3.velocity to t% free-streem velocity and
the ratio of the local temperature to the free-stream temperature at SU
yoints on the smface of a body and at t~e outer edge of its boundary
leyer do not change with Reynolds number and when the Mach number and the
physicel propertied of the gas also do not change with Reynolds number,
then it folluws that:

1. The boundary-layer thiclmess at a fixed yoint on a body is
inversely proportional to the square root of the Reyncdilsnumber Ro.

2. The surface-frictioncoefficient at a fixed yoint is inversely
proporticmal to the square root of the Reynolds nuder Ro.

3. The friction drag coefficient of the pert of a body covered by
a lamin.ar boundary l~er is imversely proportional to the square root
of the Reynolds numler R..

4. The separation point is independent of the Reynolds num%er R..

5. The nondimensional velocity profile is invariable when the

velocity ratio ti/6 (where ti is the velocity inside the boundary layer
and paraXlel to the surface and ~ is the veiocity at the outer edge of

the boundary layer and parellel to the surface) is plotted against ;~

d
. . -—.——— ————. .——. — . . _.— _ —.. -. ——— ——. — . . . . . -
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,(where ~ is t3fe&Lst~ce measured fram the surface in a &Lrection[
yerpendiculsr to the surface, 2

the Reynolti numb??) at a fixed
stagnation point. By use of the
of the lsminsr boundary layeg isI
pressure along the surface rises

Langley Aeronautical La%matory
ITationsl Adtiswy Committee

is the length of the body, end R. is

fraction of the body length frcm the
boundary-lsyer eqydions, separation
shown to occur only when the static
in the dire@icm of flow.
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